AUTHOR	Phillips, Kennetn L.
TITLE	Relating the Mole Concept and Fundamental
	Mathematics.
PUB DATE	May 89
NOTE	57p.: M.S. Practicum, Nova University.
PUB TYPE	Dissertations/Theses - Practicum Pafers (043) -Tests/Evaluation Instruments (160)
EDRS PRICE	MF01/PCO3 Plus Postage.
DESCRIPTORS	Abstract Reasoning; *Chemistry; Computer Assisied
	Instruction; Computer uses in Education; *Concept
	Formation; *Mathematical Applications; *Mathematical
	Models; *Problem Solving; Programed Instructional
	Materials; Reading Skills; Science Education;
	*Science Tn̄こruction; Scientific Literacy; Scientific
	Metricdoloyy

Abstract

The hion percentage of students who have difficuity in solving free-response problems related to the mole concept was addressed by implementation of reading skill strategies and computer assisted instruction. Frayer models, semantic mapping, and graphic organizers from Reading in the Content Area (RICA) were used to increa, e student understanding of the scientific pririciples involved. Computers and a variety of computer programs from COMPress and Knowledge Factory were used by the target group for review, drill, and practice in relating their math skills to solving problems. The results indicated a considerable increase in the ability to solve problems related to the mole concept. It was concluded that better understanding of scientific concepts coupled with computer use for drill and practice was very effective in helping students relate science and mathematics. Appendices include evaluation instrumenis, examples of RICA Skills, supplementary handouts usec for computer instruction, and sample responses from student comments regarding computer aided instruction. (Author)

RELATING THE MOLE CONCEPT AND FUNDAMENTAL MATHEMATICS

by

Kenneth L. Phiilips

Subrnitted to the Faculty of the Center for the Advancement of Education at Nova University in partial fulfillment of the requirements for the degree of Master of Science.

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."
U.s. DeAnitimert or boucation

Once of Edventional famearch and improwament EDUCATIONL AESOURCES INFORMATION - CENTER (ERIC)
dYhe document has been reproduced as recerved from the person or orgemization orlegrating it

- Minor cherf, as have been mede to improve reproducting q rievily
- Pointe of vi w or opinwonsstated in the document do not meceseartly represent officual OEAI poention ce poincy

The abstract of this report may be placed in a National Database System for reference.

May/1989

Authorship Statement

I hereby testify that this paper and the work it reports are entirely my own. Where it has been necessary to draw from the work of others, published or unpublished, I have acknowledged such work in accordance with accepted scholarly and editorial practice. I give this testimony freely, out of respect for the scholarship of other workers in the field and in the hope that my work, presented here, will earn similar respect.

ii

Abstract

Relating the Mole Concept and Fundamental Mathematics Phillips, Kenneth L., 1989: Practicum Report, Nova University, The center for the Advancement of Education. Descriptors: Mole Concept / Science Instruction / Chemistry / Scientific Literacy / Abstract Reasoning / Concept Formation / Scientific methodology / Computer Assisted Instruction / Mathematical Applications / Frogrammed Instructional Materials / Problem Solving / Mathematical Models.

The high percentage of students with difficulty in solving freeresponise problems related to the mole zoncept was addressed by implementation of reading skill strategies and compate: aided instruction. Frayer models, semantic mapping, and graphic organizers from Reading. in the Content Area (RICA) were employed to increase student understanding of the scientific principles involved. Computers and a variety of computer programs from COMPress and Knowledge Factory were used by the target group for review, drill, and practice in relating their math skills to solving problems. The resuis indicated a considerable increase in the ability to solve probiblems related to the mole concept. It was concluded that better understancling of scientific concepte coupled with computer use for drill and practice is very effective in helping students relate science and mathematics. Appendicies include evaluation instruments, examples of the RICA Skills, supplimentary handouts used for computer instruction, and sample responses from student comments regarding computer aided instruction.

Table of Contents

Page
Title Page. i
Authorship Statement ii
Abstrict. iii
Observer's Verification. iv
Chapters
I. Purpose. 1
II. Res sarch and Solution Strategies. 8
III. Method 17
IV. Results. 22
V. Recommendations 31
Reference List. 」4
Appendices 37
Appendix A: Pre-implementation Evaluation. 38
Appendix B: Post-implementation Evaluation 39
Appendix C: Frayer Models. 40
Appendix D: Semantic Maps 42
Appendix E: Graphic Organizers 44
Appendix F: Handouts 48
Appendix G: Responses 52

CHAPTER I PURPOSE

This practicum was conducted at a high school located in a southeastern community of one of the most rapidly growing urban areas in the state of Florida. The county is approximately 635 square miles in size and ranks seventh in the state in population, almost 580,000 . This translates into 910 persons per square mile (Clements, 1987).

The population increased 22 percent in the years between 1980 and 1986, from 473,000 to 578,000 . Twentyfour thousand of that increase (22.4 percent) is considered natural growth while 83,000 (77.6 percent) is due to migration. This increase is primarily attributed to the availability of jobs created by a tremendous increase in the tourist industry. It is estimated that the area receives over 25 million tourists per year (Clements, 1987). Statistics show that 26 percent of Centra! Florida households relocate every year (Donnelley , 1985).

The city covers approximately 65 square miles and has a population of approximately 150,000 . This is almost 2,300 persons per square mile. The main ancestry groups are English and Irish. The present population is ap proximately 83 percent

White, 13 percent African-American, and four percent LatinAmerican; Asian/Pacific islanders, and others. Approximately 28 percent of the population is under the age of eighteen (Clements, 1987).

Although the school is located near the center of such a rapidly growing area, the community it serves is one of the oldest and most established sections of the city and, therefore, experiences little growth. The predominate socio-economic categories of the community are middle and upper-middle class but include lower-upper and middle-upper class. The community attitude is one of pride and conservatism and there is much concern for the education and welfare of the chiidren.

Two parent organizations, the Parent/Teacher Association (PTA) and the Boosters Club, actively support academic and sports programs of the school with their lime and financial assistance. A large percentage of the parents of the students have attended college and approximately 40 percent have a college degree. This characteristic is passed from parents to children as evidenced by the fact that for the past several years over 60 percent of the graduating seniors have atteuded college. Students consistently score above county state, and national averages on the State Student Assessment Test (SSAT) and college entrance exams, su h as the American College Test (ACT) and the Scholastic Aptitude

Test (SAT). In 1988, 28 percent of the graduating seniors received honors diplomas (Annual Report, 1988).

The school population was 1,965 total enrollment with 564 ninth-grade students, 511 tenth grade students, 476 eleventh-grade students, and 414 twelfth-grade students. Almost 88 percent of the enrollment was White, four percent African-American, six percent Latin-American, and the remainder Asian/Pacific islander or Native American (Enrollment Summary, 1989).

The author of this practicum is a teacher certified in the areas of chemistry and physics with 20 years experience in the classroom. Three levels of chemistry are offered at the school (Chemistry I, Chemistry I Honors, and Chemistry II Honors), and the author presently teaches classes at each level.

The target population for this practicum was a class of 19 Chemistry I students. There were three tenth-grade students, ten eleventh-grade students, and six twelfth-grade students. There were six female and 13 male students. All of the students had taken and successfully completed Biology I and Algebra I. All of the students had taken and passed the State Student Assessment Test part II, which is required of all students in order to receive a high school diploma.

A large segment of the physical sciences is described by, .exemplified by, or employs fundamental mathematics to some
extent. Ry iundamental mathematics, the author is referring to addition, subtraction, multiplication, division, and the abiity to solve a simple algebraic equation with a single unknown, such as a direct proportion. In almost every major inpic of a firstyear chemistry course, there is some use of numbers, most often involving computations for the solution of a problem. For this reason, first year algebra is a pre-requisite before a student is permitted to enroll in a chemistry course.

It was the author's observation that most of he students in the target population could perform the necessary mathematical computations and were as scientifically literate as other first-year chemistry students of comparable background. Nonetheless, they experienced great difficulty relating their nathematics skills to scientific concepts. The following summary of information taं ${ }^{\text {cen }}$ from the students' Cumulative Folders is offered as evidence of the capabilities of the students regarding their computational skills and science background.

With one exception, all of the students in the target population had completed Algebra I with a grade of C or better. One student took Algebra I in summer school and passed with a grade of D. The available results of the Comprehensive Test of Basic Skills (CTBS) related that 60 percent of the students had a stanine score in the 7 to 9 range (above average) and
that 40 percent had a stanine score in the 4 to 6 range (average) in mathematics. In addition to the stanine scores, 86.7 percent were above the seventieth percuntile, 6.7 percent were in the sixtieth percentile, and 6.7 percent were below the thirtieth percentile in mathematics.

The students' science grades and scores on the CTBS were not as impressive as their math grades and scores. Seventyfive percent of the students made a C or better in biology, and 25 percent made a D. Only 31.2 percent of the class had stanine scores from 7 to 9 in science, and the remainder of the class, 68.8 percent, fell into the four to six stanine category. Forty-two and nine-tenths percent were above the seventieth percentile, 42.9 percent were in the fortieth to sixtieth percentile, and 14.2 percent were in lower than the fortieth percentile in science (Cumulative Folders,1989).

After having been taught ihe mole concept, having practiced solving mole problems in class and at home, and having completed work sheets on the mole concept, 79 percent of the students in the target group scored less than 20 percent on the free-response section of the chapter test. The other 21 percent scored only 50 percent on the free-response portion of the test. The free-response section of the test consisted of six problems related to the mole concept. None of the problems
involved math skills in addition to those previously mentioned on page four (Appendix A).

According to county standards, 65 percent is a passing score and, although no teacher wants failure, seven percent is an acceptable failure rate. Even though the science scores and grades are generally lower than the math scores and grades, it was the contention of the author that at least 93 percent of the students should have been able to score a passing grade (i.e., 65 percent) on this material.

Generally all students in the target population were functioning below capability when applying their math skills to scieatific concepts. After applying the techniques of concept modeling, semantic mapping, structural overviews, and after using computers for review, practice, and drill, the following objectives were assessed:
A. All of the students in the target group were to:

1. calculate correctly the formula mass of a compound when given the formule and a table of atomic masses;
2. calculate correctly the molar mass of a compound when when given the formula and a table of atomic masses.
B. Ninety percent of the studeats were to calculate correctly the percent of an element n a compound when given the formula and a table of the atomic masses.
C. Seventy-five percent of the students were to convert correctly a given amcunt of a substance to molecules, grams, or moles when given the formula. and a table of atomic masses.
D. Fifty peicent of the stadents were to calculate correctly the empirical formula and molecular formula for a compound from composition data.
E. All of the students were to solve correctly four of the six problems on the solution strategies evaluation.

These objectives were measured by assessing student performance on a free-response instrumeni designed to be analogous to the original free-response portion of the chapter test mentioned on page six (Appendix B).

CHAPTER II
 RESEARCH AND SOLUTION STRATEGIES

"Chemistry is the science dealing with the structure and composition of substances, (and) the changes in composition..." (Metcalfe, Williams, and Castka, 1986). The individual pieces composing the matter (atoms and molecules) are so small that no one can see them or feel them. Since much of chemistry deals with quantities of matter, scientists have defined a unit for the measuring of an amount of a substance. This unit is the mole. By definition the mole is the amount of a substance that contains the Avogadro number of any kind of chemical unit (Metcalfe, Williams, and Castka, 1986). The mole is the most importart worept in the first-year chemistry course because of its use ir : oichiometry (Kolb, 1978). Stoichiometry is the branch of chemistry that desls with the calculations of quantities of substances involved in a chemical change (Herron, 1987).

For beginning chemistry students, there are many problems associated with understanding the mole and related concepts. Ascording to the research to be cited oy this author, these problems are not specific to the United States. Articles
researched include materials from studies completed in Israel, England, Scotland, ard Italy. Most of the problems cited are related to the students' abilities to understand scientific concepts, think abstractly, and relate their math skills to scientific concepts.

Language difficulties include, but are not limited to, the definitions of words and the method of statement of word problems. In a survey of chemistry textbcoks used in secondary schools in Italy, some of the texts failed to define the mole as a unit of amount. Only three of thirteen texts gave a correct definition and related the mole to the Avogadro number (Cervellati, 1982).

Hudson (1976) stated that the mole should be defined as a quantity, not a number, and should te expressed as a mass or volume. Furthermore, students should be given the opportunity to use the term "mole" as often as possible in order to enhance understanding.

Because the mole is usually expressed in grams, some students tend to think of the mole as a certain mass rather than a definite number of particles. Other students limit the mole to gases, while still others apply the molar volume (the volume of cae mole of gas at standard temperature and pressure) to all substances. Some students think that the mole is a property of a molecule. It is also plausible that the
phonetic similarities of such terms as molecular mass, molar mass. molar volume, gram-molecular mass (weight), etc., add more difficulty to the understanding of the concept (Novick and Menis, 1976).

Henson and Stumbles (1979) stated that one of the difficslties in understanding problems associated with the mole, at least for students whose mathematical background is modern math, is the language in which the problems are stated. If the problems were stated in math te as these students understand, they would be as capable of solving problems as students having been taught traditional math.

Because of the minuteness of atoms and molecules, macroscopic observations must be explained in torms of microscopic concepts. Changes which the students can see are interpreted in terms of intangible particles. This necessity is difficult for many students to understand (Novick and Menis, 1976). Hudson (1976) pointed out that students are quite often required to relate inaccurate laboratory results to accurate expressions of formulas. This is especially a source of confusion for students that have been presented the mole concept via laboratory investigation.

Kolb (1978) viewed this aspect of understanding the mole concept from the reverse dirccion. When discussing chemical reactionns, students were taught to use the terms atoms and
molecules. However, when reactions were carried out in the laboratory, large numbers of molerules were required in order to see what was happening. In order to count out the molecules, the concept of moles of molecules was employed. Even more confusing to the stucients is the fact tinat the moles of molecules must be actually measured out on a balance, and the quantity is usually expressed in grams. The relationship between particles, moles, and grams is very difficult for students to grasp.

Schlenker and Perry (1983) cited that as many as half of the beginning chemistry students 'ack the ability to use abstract reasoning structures. This means that the thinking of this half of the students is still in the concrete mode. The results of the study by Novick and Menis (1976) indicated that many students do not function at the cognitive level necessary to understand the mole concept or to use it in problem solving. To understand the concepts related to the mole, students need to have developed inte'lectually to the stage of being able to use abstract symijols to solve problems and then translate the resalts back to reality (Duncan and Johnstone, 1973).

Students have difficulty coping with mathematical ideas, such as ratios and proportional reasoning, and scienific concepts, such as the mole concept, at the same tinie (Hudson, 1976). Students especially have difficulty solving mole
problems that involve other than a $1: 1$ ratio (Duncan and Johnstone, 1973).

The distinction between numbers and quantities is a major problem for beginning chemistry students. Numbers in rrath classes and numbers in scionse classes are not used in the same manner and do not have the same meanirg. Unlike the numbers used in math which are usually small and whole (i.e., integers), quantities in science often consist of very large or very small numbers and must include a unit of measure. The symbols used in math have no physicai meaning. For example, in the expression $X=2$, neither the X nor the 2 can be related to something physical. The symbols used in science do refer to specitic entities. For example, the expression 2.0 g means two and zero-tenths grams of a substance, a quantity or amount of the substance measured in gram units (Herron, 1987). The meaning of the quantity must be retained when applying mathematical computations in a stoichiometric problem or when changing the quantity to a different unit of measure (Dierks, 1985).

There are many approaches to and possibilities for solution strategies that could lead to better understanding and use of the mole concept by beginning chemistry students. Some researchers recommended that the mole concept should be taught only when students have reached the cognitive level
necessary to gain full understanding of the concept (Cervellati, 1982). Some indicate that simpler and less involved development in the early part of the course should be employed in order to reduce the conceptual demands placed on the students (Novick and Menis, 1976). Still others say that it is the responsibility of the teacher to use the language that students understand when asking questions and giving problems and not vice-versa (Henson and Stumbles, 1979). It nust be stated that this author does not fully agree with any of these statements but realizes that they do hold some merit.

Instruction should be designed and given in such a manner as to facilitate learning at the concrete level (Schlenker and Perry, 1983). For students with a high level of mathematical anxiety, a more visual approach, i.e., the use of diagrams and/or concept mapping, and a less mathematical approach should be incorporated. For students that are lower level math-anxious, a less visual/more mathematical approach should ie used, i.e., the factor label method, sonietimes called unit cancellation (Gabel and Sherwood, 1983).

Thought processes (the use of "road maps") should be emphasized rather than the memorization of formulas for the solutions of problems (Festa, 1985). Problems should be presented with slight variations or modifications that would require the students to think about a particular problem's
solution more carefully (Gabel and Sherwood, 1984). The use of a conversion matrix to simplify stoichiometric calculations from balanced equations was suggested by Berger as cited by Festa (1985). The matrix helps students understand the mole/gram relationships in a balanced equation. Analogies and analog tasks can be used not only to increase understanding of abstract concepts but also to determine which types of difficulties the students might have in understanding the concepts (Gabel and Sherwood, 1984).

In order to be successful in problem solving in chemistry, students need to practice. This is especially true in the areas involving the use of scientific notation (usually associated with the number of particles), multistage problems, and problems involving division (Gabel and Sherwood, 1984). Practice of this type can best be achieved via the use of computers. Some of the advantages computers have over teachers are that they:

1. are not judgmental, impatient, or critical;
2. provide instant feedback for the students;
3. allow the students to work at their own pace;
4. provide review information as often as needed;
5. are consistent in presentation of concepts and evaluation of responses (Brown, and Forrestall-Brown 1986).

This author implemented the use of techniques presented in the course Reading In The Content Area (RICA) and the use of computers to assist students in relating their math skills to solving problems associated with the mole concept. This approach served to clarify the meaning of the mole and related terms while allowing the students to drill and practice solving problems in a non-threatening atmosphere.

The RICA concepts used were the Frayer model, the graphic organizer, and semantic mapping. The Frayer model (Frayer, Frederick, and Klausmeier, 1969) is a technique of word categorization which requires students to distinguish relevant features, identify characteristics from various perspectives, classify examples and non-examples, and cite reasons for the classifications based on the defining attributes. The graphic organizer (Readence, Bean, and Ba.!win, 1981) was used by the author to identify and classify the vocabulary and relationships of the concepts. Graphic organizers include such items as pictures, flow charts, maps, etc. Semantic mapping (Heimlich and Pittelman, 1986) was used to relate words to other words. It differs from the graphic organizer in that it is student involvement that develops the relationships between the words.

The compuier-assisted instruction was primarily for review of the concepts and drill and practice of problem
solving. A variety of programs were used to present random problems related to the mole concept, including such $\mathrm{t}_{0}^{\circ}, \mathrm{s}$ as percent composition, mass-mole problems, mass-mass problems, and the calculation of mole satios to determine empirical and molecular formulas. In some programs the degree of difficulty could be regulated so that students weaker in math skills would not become intimidated and give up. The computers provided a continual source of review and problemsolving practice which allowed the students to proceed at their own pace and to the extent necessary for mastery of the subjeci.

CHAPTER III

METHOD

The solution strategies can be divided into two categories on the basis of purpose and expected outcome. The first of these involves the use of content reading strategies to improve understanding of the major concept, the mole, and the related vocabulary. These strategies were incorporated durisg the first three weeks of implementation. The second category of strategies involves the use of the computer for actual drill and practice to improve skills in solving problerns related to the mole concept. This portion of the implementation occurred during weeks four through nine. The evaluation of the solution strategies was conducted in week ten.

In week one the students in the target group were presented the basic attributes of the Frayer model (Appendix $\mathrm{C}: 1$). The author defined a word related to the mole concept. The students were then divided into small groups for a period of 10 to 15 minutes. The purpose of the small groups was to develop a list of examples of the defined word. As the examples were supplied by the students, the author wrote them on the overhead projector and organized them into categories. Examples were distinguished from non-examples
on the basis of reievant attributes. Similarities of the examples or common characteristics were grouped as essential characteristics and differences were grouped as non-essential characteristics. From these considerations the students were helped in understanding what the mole is, as well as what it is not (A ppendix C:2).

In week two the semantic mapping strategy was introduced to the students (Appendix D:1). The term "mole" was the central concept. Students then constructed a class semantic map on the chalkboard and produced visual connections between associated words. Discussion of the relationships of the words accompaniza this development. A more extensive semantic map than the author anticipated was developed (Appendix D:2).

In week three the students were presented with graphic organizers in an attempt to depict visually the conceptual scheme whereby conversions from one unit of measure to another unit of measure is accomplished. These organizers visually demonstrated the mathematical relationships between moles, grams, atoms, molecules, the molar volume of a gas, etc.

The first graphic organizer presented multiplication as the mathematical process used when converting moles of an element to grams, particles (atoms for monatomic or molecules for diatomic elements), or liters (gaseous elemenis only). The
graphic organizer also gave the conversion factor to be used in the conversion (Appendir E:1). A second graphic organizer was given for the conversion of moles of a compound to grams, particles, or liters (Appendix E:2). The primary difference in the change of units for elements as compared to compounds is the fundamental particle of each (atoms or diatomic molecules for elements, molecules or formula units for compounds). Any time the unit changes from moles to some other unit of measure, multiplication is the mathematical skill to be used.

The third and fourth graphic organizers (Appendix E:3 and E:4) presented division as the mathematical piocess used when converting grams, particles, or liters of an element or compound to moles. Any time the unit changes to moles, division is used.

During week four the implementation of the use of computers began. Because the computers are not in the chemistry classrooms, a suitable schedule for their use had to be devised with the other instructor involved. This presented some problems because he did not wish to exchange rooms. For this reason, all of the instruction about the computer's use was conducted in the author's classroom and the students had to delay actual hands-on learning until moving into the physics classroom. To begin the instruction, the students were given a lecture/demonstration on how to start and run a computer
program. They were introduced to and told the functions of the basic components of a microcomputer. They were also instructed in the use of proper terminology and the correct use of each part of the equipment. Handouts prepared from the Apple IHGS owner's manual were given to eash student. These included a picture of the keyboaril indicating its "special" key ínctions, a list of the essential terminology with definitions, and a list of rules for the proper handling of the program diskettes (Appendix IT:1-F:4).

During week five each of the students demonstrated to the author, the proper use of the equipment, i.e., handling of the diskettes, turning on the computer, booting and running a program, etc. Students initially worked in small groups (2 or 3 individuals) until they felt comfortable working with the computers. Many of the students had taken or were taking either basic computer programming or business education applications of computers and were relatively computerliterate at the start.

In weeks six through nine, the studenis worked individually or in small groups with the computers. The programs used were from Introduction to General_Chemistry by COSiPress and Knowledgebase-General Chemistry_la by Knowledge Factory. The COMPress programs are tutorial in nature with no provision for record keeping or grading on the
diskettes. There was a total of ten programs from COMPress, each of which contained from 2 to 5 lessons. The Knowledge Factory programs are primarily quiz type programs with timed and untimed modes as well as varying levels of performance expectation. There were five programs from Knowledge Factory, each containing from 10 to 25 questions. Students were expected to complete all of the programs. either individually or in small groups.

Since the murnicer of computers available was limited to eight, most class-time use w is in small groups. Individuals were allowed to rotate computer usc; however, this limited actual computer time to approximateíy 20 minutes per student per day. To a limited extent students were able to work at their own pace in a non-threatening atmosphere and were able to review as necessary for mastery of the material. Students were encouraged to stay after school for individual work whenever possible but this was seldom utalized.

Week 10 was used for the final evaluation of the effect of the solution strategies on the ability of the target gror'p to solve problems related to the mole concept. Students were given the evaluation instrument in Appendix B and the resuits are discussed in the following section.

CHAPTER IV

RESULTS

The evaluation of solution strategies took place during the tenth week of implementation. A six question freeresponse instrument was developed by the author to evaluate the ability of the target population to solve problems related to the mole concept. The instrument was analogous to the initial evaluation instrument that originally alerted the author to the problem. A comparison of the results from the postimplementation of strategies evaluation with the results from the initial instrument reveals the relative significance of the value of the improvement program as presented to and executed by the target population. It must be noted that not only the correct answer was graded, but the solution method had to be correct and logical for the students to receive credit for the problem. This was primarily because it is sometimes possible to derive a correct answer via an incorrect process because of mass similarities and differences among the elements.

The first problem required that the students calculate the formula mass of a compound. To solve this problem the mass of each element must be checked in a periodic table, the mass multiplied by the number of atoms of that element in the
formula, and the sum of all of the masses of all of the atoms of each element be determined. The author had anticipated that 100 percent of the target population would solve this problem correctly. Eighteen of the 19 students (94.7 percent) solved this problem correctly. The one student that did not solve the problem correctly had the set-up for a proper solution but made a calculator error.

The second problem required that the students calculate the molar mass of a compound. The molar mass is the numerical portion of the formula mass but the unit of measure is the gram instead of the atomic mass unit (a.m.u.). The solution procedure is essentially identical with that of problem one. The author again had anticipated that 100 percent of the target population would solve this problem correctly. Once again 18 of 19 (94.7 percent) of the students solved this problem correctly. The student that did not solve the problem correctly determined the molar mass correctly and then multiplied by Avogadro's number.

Problem three involved finding the mass percent of an element in a comjound. Any mass data that gives the ratio of the mass of the element to the total mass of the compound can be used. Because the formula is a mole ratio of the elements in one mole of the compound, the masses used in this problem were to be derived from the formula mass or molar mass as in
the first and second problem. The mass percent equals the mass of the element in the formula divided by the total mass of the formula and then multiplied by 100 percent to change the decimal to a percent. Because of the previous background of the target population in working with percentages, the author had anticipated that 90 percert of the target population would solve this problem correctly. Twelve of the 19 students (63.2 percent) calculated the mass percent of nitrogen in the compound $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ correctly. Of the seven students who solved the problem incorrectly, four students (57.1 percent) failed to use the total amount of nitrogen for its mass, one student (14.3 percent) inverted the masses, one student (14.3 percent) did both, and one student (14.3 percent) used a procedure totally foreign to the correct solution method.

Problem four was to convert a given mass in grams of a compound to moles. The formula of the compound was also given. The process involves dividing the given mass by the molar mass of the compound. The author had anticipated that 75 percent of the target population would solve this problem correctly. Sixteen of the 19 students (84.2 percent) solved this problem correctly. Of the three that were incorrect, one made a calculator error, one multiplied instead of divided, and the other conyerted the mass to the number of particles instead of moles.

The fifth problem was to convert the moles of a compound to the mass in grams. This problem was the reverse process of that in problem four, i.e., students had to multiply the number of moles given by the molar mass. The author had anticipated that 75 percent of the target population would soive this problem correctly. Fifteen students (78.9 percent) solved this problem correctly. Of the four students that were incorrect, two students (50 percent) divided instead of multiplied, one student (25 percent) converted moles to number of particles instead of grams, and one stude.nt (25 percent) used a process totally unrelated to the correct solution process.

The sixth and most difficuit problem had two parts and credit was not given unless the students solved both parts correctly. The first part of the problem was to determine the empirical formula of a ciompound from mass data. The solution process involves converting the mass in grams of each ciement to moles as in problem four. After this has been done, determining the simplest whole number mole ratio produces the ratio of atoms in the formula. The second part of the problem involved the determination of a molecular formula (which is some multiple of the empirical formula) from the empirical formula and a given molar mass. The author had anticipated that 50 percent of the target population would
solve this problem correctly. Only five students (26.3 percent) solved both parts correctly. Fourteen students (73.2 percent) solved one of the two parts correctly while two students (10.5 percent) solved neither part of problem six correctly. Of the 14 students solving at least one of the two parts correctly, only one student (7.1 percent) calculated the empirical formula correctly. Of the thirteen students who calculated the empiricail formula incorrectly, only five (38.5 percent) calculated the mole ratio correctly even though 16 of 15 of the target population (84.2 percent) had solved problem four correctly. Two of the five students (40.0 percent) with a correct mole ratio rounded or cleared the decimal incorrectly. The other three students with a correct mole ratio (60.0 percent) used a process unrelated to determining the simplest whole number ratio. Of the eight students with incorrect mole ratios, four (50.0 percent) had used the mass ratio or percent to determine the empirical formula. The other four students (50.0 percent) did something unrelated to the correct solution of the problem. Of the 14 students not receiving credit for problem six, 11 (78.6 percent) were able to solve the second part correctly even though they were incorrect on the first part. This was possible because of the similarity in molar mass of oxygen and nitrogen (16 and 14 respectively). This allowed an incorrect process to produce a correct answer for the empirical formula.

If elements with a greater difference in molar mass had been used, such as hydrogen and carbon (1 and 12 respectively), this would not have happened.

If problem six had been considered as two separate problems, 6 of 19 (31.6 percent) of the target population solved problem 6a correctly, and 16 of 19 (84.2 percent) solved probiein 6b correctly. Table I summarizes these results.

Table I
Summary of correct responses
and objectives.

PROBLEM \# \# CORRECT \% OF TARGET \% EXPECTED OBJ, MET

1	18	94.7	100	NO
2	18	94.7	100	NO
3	12	63.2	90	NO
4	16	84.2	75	YES
5	15	78.9	75	YES
6	5	26.3	50	NO

It can be clearly seen that the multistage problems, percent calculation (problem three) and empirical/molecular formula calculations (problem six) present the greatest difficulty for students. With the exceptinn of problem three, this outcome was expected as indicated by the author's
outcome objectives; however, the percentages were not expected to -be so low. In formulating and stating the outcome objectives the author did not make allowance for such things as calculator error, incorrect rounding, etc. This would have made a difference in attaining at least two of the objectives.

Table II presents a summary of the number and percertages of the target group solving a given number of problems corectly before and after implementation. It also lists the percentage increase or decrease in correct responses. A decrease in the lower range and an increase in the upper range indicate the relative success of the solution strategies.

Table II

Summary of th: total correct responses for the pre-test and post-test and percentage change.

\# CORRECT	PRE	$\%$	POST	$\%$	$\%+$ OR
0	10	52.6	0	00.0	-52.6
1	6	31.6	0	00.0	-31.6
2	2	10.5	2	10.5	00.0
3	1	5.3	1	5.3	00.0
4	0	00.0	10	52.6	± 52.6
5	0	00.0	3	15.8	+15.8
6	0	00.0	3	15.8	+15.8

It can be seen that on the pre-test, 100 percent of the target population scored less than 50 percent. One student (5.3 percent) solved three out of six problems correctly, two students (10.5 percent) solved two out of six problems correctly, six students (31.6 percent) solved one out of six problems correctly, and ten students (52.6 percent) solved zero out of six problems correctly.

On the post-test, only three students (15.8 percent) scored less than 50 percent. There was an 84.2 percent increac: in the number of students scoring over 50 percent, an amount equaling that of all students solving zero or one problem correctly on the pre-test. Ten students (52.6 percent) solved four out of six problems correctly. This was a 52.6 percent increase over the pre-test. Three students (15.3 percent) solved five out of six problems correctly. This was a 15.3 percent increase over the pre-test. Three students (15.3 percent) solved six out of six problems correctly. This is also a 15.3 percent increase over the pre-test.

Two groups of "number of problems correct" remained the same: two students (1C.5 percent) solving two out of six problems correctiv and one student (5.3 percent) solving three out of six problems correctly. In view of the other increases in
problem solving ability, the author believes tnat it is not very probable that they were the same students.

Although the author's objective of having a 93 percent increase in the number of students that solved at least four out of the six problems correctly was not achieved, the increase in student alsility due to the solution strategies cannot be denied. The Frayer model, graphic organizers, and semantic maps aided the students in deveioping a beiter conceptual understanding of the mole concept. $\mathrm{T}^{\mathbf{T}}$ use of the computers for review, drill, and practice was an outstanding success. Appendix G provides some typical responses received from the students after they were asked to commeit on the value of the computers in their learning experience. It is reasonable to assume that if there had been a computer lab or computers in the author's room providing unlimited use by the students, even greater success could have been attained.

CHAPTER V

RECOMMENDATIONS

Because of the notable success of the solution strategiss implemented to nprove student ability to solve problems related to the mole concept, the author plans to apply these strategies to the concepts of stoichiometry, solution concentration, gas laws, kinetics, and equilibrium. Just as the mole concept is difficult for students, these areas of chemistry pose particular problems for beginnii.g chemistry students. The author believes tha. s.s is because of the relationships between mathematics and scientific concepts. This practicum was designed to study and implement stratiegies for improvement of exactly these types of situations. The author will continve to use the RICA strategies and strive is develop new graphic organizers for the above mentioned intended areas of application. The author will also continue to use the computers for review, drill, and practice as scheduling permits.

Students of the target population have been encouraged to use the RICA strategies in each of the new areas of study because new concepts and new vocabulary necessary to the understanding of the subject will be presented. It is esseatial
to learn the sanguage of chemistry in order to develop the skills necessary for the mastery of the macerial.

Using the results of this practicum as evidence for successful achievement of enhanced learning, the author will submit a request for the acquisition of computers for the chemistry department. Supplying the chemistry department with computers will greatly lessen the confusion and problems related to sharing classrooms and scheduling computer use with the physics department.

The other chemistry teacher in the school is being encouraged by the author to implement these techniques in her first year chemistry classes and the author is extending use of the techniques to the first year honors classes and the second year honors class.

The results of the practicum will te, presented to the entire science department of "Practicum High School" at the next cegularly scheduled meeting. Since many of the teachers already practice the use of RICA techniques tie emphasis will be toward stimulating interest in the use of computers as a supplemental technique for the improvement of learning in the field of scieace.

The author will also disseminate the results of this practicum to the county science supervisor and $t^{\text {: }}$ e other chemistry teachers in the county as evidence for the successful
use of computers in the science classroom. This will be accomplished through the newly founded alliance of chemistry teachers which is scheduled to meet in the fall of 1989. It is expected that these results will stimulate interest among the chemistry teachers in becoming computer-literate. This should lead to in-service education programs which will enable the teachers to apply the latest technology for enhancing and stimulating the education of their students.

REFERENCELIST

Annual Report from "Practicum" High School. 1988.
Brown, Willian F., Dorothy Z. Forrestall-Prown. "Assisted Effectiveness of Computer-Assisted Study Skills Improvement Program (CASSIP) as Reported by Program Directors." Paper presented at the (94th) Annual Convention of the American Psychological Association. Washington, D.C. 1986.

Cervellati, R., et al. "Investigation of Secondary School Students' Understanding of the Mole Concept in Italy." Joumal of Chemical Education. Oct. 1982.

Clements, John. Elorida_Facts. Dallas: Clements Research Inc. 1987.

Dierks, Werner, Johann Weniger, J. Dudley Herron.
"Mathematics in the Chemistry Classroom. Part 1. The Special Nature of Quantity Equations." Loumal of Chemical Education. Oct. 1985.

Donnelley Marketing Information Services. Pace Magazine, Jan. 1585.

Duncan, I. M., A. H. Johnstone. "The Mole Concept." Education in Chemistry. Nov. 197?

Enrollment Summary from "Practicum" Coui. , Public Schools. Jan. 1989.

Festa, Roger R. (Editor) "Insights." Journal of Chemical Education. May 1985.

Frayer, D. A., W. C. Frederick, and H. J. Klausmeier A J̄chema for Testing the Level of Cencepl Marery. Madisoa, WI: University of Wisconsin R \& D Center for Cognitive Learning. 1969.

Gabel, Dorothy L., Robert D. Sherwood. "Facilitating Problem Solving in High School Chemistry." Journal of Research in Science Teaching. Feb. 1983.

Gabel, Dorothy L., Robert D. Sherwood. "Analyzing Difficuities with Mole-Concept Tasks by Using Familiar Analog Tasks." Joumal of Research in Science Teaching. Nov. 1984.

Heimlich, Joan E., and Susan D. Pittelman. Semantic Mapping: ClassroomApplications.. Newark, DE: International Reading Association. 1986.

Hensna, R., A. Stumbies. "Modern Mathematics and The Mole." Education in Chemistry. Jan. 1979.

Herron, Dudley J., et al. Heath Chemistry. Massachusettes: D. C. Heath and Co., 1987.

Hudson, M. J., "Introducing the Molc." Education in Chemistry. July 1976.

Kolb, Doris. "Chemistry Principles Revisited: The Mole." Lournal of Chemical Education. Nov. 1978.

Meicalfe, H. Clark, John E. Williams, Joseph F, Castka. Modern Chemsitry. New York: Holt, Rinehart, Winston, 1986.

Novick, S., J. Menis. "A Study of Student Perceptions of the Mole Concept." Joumal of Chemical Education. Nov. 1976.

Readence, J. E., T. W. Bean, and R. S. Baldwin. Content Area Reading: An Integrated Approach. Dubuke, IA: Kendall/Hunt Publishing Co. 1981.

Schlenker, Richard M., Constance M. Perry. "The Molar Concept: A Piagetian-Oriented Learning Cycle." Journal of College Science Teaching. May 1983.

APPENDIX

APPENDIX A

11nNH: \qquad In 11: \qquad PEli. \qquad

(. Calcoilate the formuin mass of \qquad -
2. Lalrillale line mril ar mass of $\mathrm{Ba}\left(N \cap_{3}\right)_{2}$
Z.

3. W/242 WO_{2} is what \% nitrmạn by mans:

1. Catcini al is thics number of molpes of firminia sinit.s in
\qquad 154 su 01 -.
\qquad

2. \qquad
 if ens.!! grams uf it cuntalins _ 9.2._. ariome of oltrosimat
3. \qquad

Lit). \qquad

APPENDIX B

 \qquad |n|t. \qquad rfR \qquad
 TLEASE FUI YOUN GHSWER IN THE GFACE FRUVILELU II JHE RITHI 1. Cinicuiate the formila mass of Nas SO.

1. \qquad
2. Calculate tho moinar mass of $\mathrm{Ca}_{\mathrm{a}}(\mathrm{NO})_{2}$
3. \qquad
4. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ in wiat 2 nitroqmin by mang:
5. \qquad
6. Ealculate tlim inumber of mol ges isf formuia cinits in 224 $\xrightarrow{\text { of mol } \mathrm{SO}_{2}^{\circ}}$ \qquad .
7. \qquad
8. Caiculate the number of grams cif in mole(s) of

3 \qquad
6. Wiat is filap ampirical formu:s of an onitim of litrooen 1125.0 gramm of it contains -15.9 grams of witrouman?
6. \qquad
sb. It them molar asass of this compioninis is - 8.8.Og, wist
is its molacular formilat
66. \qquad

45

APPENDIX D:1

SEMANTIC MAP

ERIC

43

ERİ.

APPENDIX E: 1
GRAPHIC ORGANIZER

APPENDIX E:2

GRAPHIC ORGANIZER

APPENDIX E. 3
GRAPHIC ORGANIZER

APPENDIX E:4

GRAPHIC ORGANIZER

I:』 XIGNEddV

APPENDIX F: 2

VICABULARY FOR "IION TO RUN A COMPUTER PROCKAK"

in'lication goltwate deslgmed for a partloular purpors. llinif to load ar appllcation from a disk lito the memot; :i the computer.
(ial) (CENTRAL PROCFSSIHO UNIT) controls ail commuter (nintlonf
 perlpheral devices, and controis access to memory).
(.1 (CATIODE RAY TUBF.) a peripheral deulce renemblina television sel that dispisis Input and oulput: al:called a mon!tor.
 magnetle materlal and covered with plastlc for profrition: used in conjunction with a disk drive for storinc: Information.

III: iK DRIVE a perlpheral device that sping a floppy o: h.med dish and reads Information from and writes informallon the the disk.
t. : tCUTE run a program.

F: iERN: HEMORY devices that stre information such a:-
cassettess, flopisy and hard disks.
infoware the equlpment or eiectrical components of a mlerocomputer.

IIIEERHAL MEMORY the electrical clrculs within the compulry that allow the micromputer to retain information.
h.f:ibOARD a typewriter-type devlce used to enter information into the computer.

APPENDIX F:3

APPENLIX F:4

USE OF FLOPPY DISKEITES

It is lmportant to take good care of diskettes, thimeluc:

1. Use care and common sense when handling di-ikiles.
2. NFVER Insert or remove a dlskette while thr disk drive is running (red light is on).
3. Do not touch the precislon surface (exposed read/wrlte area).
4. Keep the diskette away from magnetlc fleld: .
5. Do not fold, bend, staple, or mutilate.
6. Do not force a diskette into or out of a disit iflive.
7. Keep the diskette stored at moderate tempel atures.
8. When not in use, keep the diskette in its irolective Jacket.
9. Keep diakeites dry. (No matter how geod the froaram do NOT drool over them.)

AFPENDIX G
The croxpouter unos kelppul kceaube ct cohowed no. oineral eanverviono that belpod wownank wit certanx problesxo. I lilled ul.
il thunk it neally doen risip, it suake pou uroberstand quidere.

Uaing the conpurten go.ne na.e c. groales undonslor dimg of the Dulijeal molon. I lebsed it alot.
the carhsuter heloo me giet as the carn futer, helpo met get as vetter inderotanding of the erijormation.
stu compuless heepid greably w the understaxgeng of chemustug rism grad to have eke opperturiey to we brem.

5

END
 U.S. Dept. of Eciucation Office of Education
 Research and
 Improvement (OERI)

ERIC

Date Filmed

March 29, 1991

